Towards Automated Deep Learning

Frank Hutter
University of Freiburg & Bosch Center for AI
fh@cs.uni-freiburg.de

@FrankRHutter
@AutoMLFreiburg
Motivation: Successes of Deep Learning

Speech recognition

Computer vision in self-driving cars

Reasoning in games
Deep learning learns features from raw data

- Multiple layers of abstractions
- **End-to-end learning**: joint optimization of a single loss function

Visualizations of network activations taken from Zeiler [2014]
Performance is very sensitive to many hyperparameters

- Architectural hyperparameters

- Optimization algorithm, learning rates, momentum, batch normalization, batch sizes, dropout rates, weight decay, data augmentation, ...

→ Easily 20-50 design decisions
Deep Learning and AutoML

Current deep learning practice

Expert chooses architecture & hyperparameters

Deep learning “end-to-end”

AutoML: true end-to-end learning

End-to-end learning
Deep Learning and AutoML

Current deep learning practice

Expert chooses architecture & hyperparameters → Deep learning “end-to-end”

AutoML: true end-to-end learning

Meta-level learning & optimization → Learning box
Deep Reinforcement Learning and AutoML

Current deep RL practice
Expert chooses state representation, RL algo, architecture, hyperparameters → Deep RL “end-to-end”

AutoML: true end-to-end learning
Metalevel learning & optimization → Learning box
Overview

Part 1: AutoML as Blackbox Optimization

- Part 2: Speeding up AutoML

- Part 3: “Auto-RL” for Learning to Design RNA
Benchmark for Progress: AutoML Challenge

- **Large-scale challenge run by ChaLearn & CodaLab**
 - 17 months, 5 phases with 5 new datasets each (2015-2016)
 - 2 tracks: code submissions / Kaggle-like human track

- **Code submissions: true end-to-end learning necessary**
 - Get training data, learn model, make predictions for test data
 - 1 hour end-to-end

- **25 datasets from wide range of application areas**
 - Already featurized
 - Inputs: features X, targets y
AutoML as Blackbox Optimization

Random search, evolutionary methods, reinforcement learning, ...
Bayesian optimization

Blackbox optimization

f(\lambda)

\lambda
Parameterize ML framework: WEKA [Witten et al, 1999-current]
- 27 base classifiers (with up to 10 hyperparameters each)
- 2 ensemble methods; in total: 786 hyperparameters

Optimize CV performance by Bayesian optimization (SMAC)
- Only evaluate more folds for good configurations
 - 5x speedups for 10-fold CV

Available in WEKA package manager; ≈400 downloads/week
AutoML System 2: Auto-sklearn

[Feurer, Klein, Eggensperger, Springenberg, Blum, Hutter; NIPS 2015]

- Optimize CV performance by SMAC

- **Meta-learning** to warmstart Bayesian optimization
 - Reasoning over different datasets
 - Dramatically speeds up the search (2 days \rightarrow 1 hour)

- Automated **posthoc ensemble construction**
 to combine the models Bayesian optimization evaluated
 - Efficiently re-uses its data; improves robustness
Winning approach in the AutoML challenge

- **Auto-track**: overall winner, 1st place in 3 phases, 2nd in 1
- **Human track**: always in top-3 vs. 150 teams of human experts
- **Final two rounds**: won both tracks

https://github.com/automl/auto-sklearn

Trivial to use, open source (BSD):

```python
import autosklearn.classification as cls
autosml = cls.AutoSklearnClassifier()
autosml.fit(X_train, y_train)
y_hat = autosml.predict(X_test)
```
• Collaboration with Freiburg’s robotics group

• Binary classification task for object placement: **will the object fall over?**

• Dataset
 – Based on BigBIRD and YCB Object and Model Set
 – 30000 data points
 – 50 features -- manually defined [BSc thesis, Hauff 2015]

• Performance
 – Strong BSc student, 3 months with Caffe: **2% error rate**
 – **Auto-sklearn: 0.6% error rate** (within 30 minutes)
• Joint Architecture & Hyperparameter Optimization

• Auto-Net won several datasets against human experts
 – E.g., Alexis data set:
 • 54491 data points, 5000 features, 18 classes
 – First automated deep learning system to win a ML competition data set against human experts

[Source: Mendoza, Klein, Feurer, Springenberg & Hutter, AutoML 2016]
Since Then: Many Works on Architecture Search

- **RL & Evolution for NAS by Google Brain** [Quoc Le’s group, ‘16-’18]
 - New state-of-the-art results for CIFAR-10, ImageNet, Penn Treebank, Cityscapes
 - Large computational demands
 - 800 GPUs for 2 weeks
 - 12,800 architectures evaluated
 - Hyperparameter optimization only as postprocessing

- **Recent work aims for efficiency**
 - Network morphisms [Chen et al, ’16; Cai et al, ’17&’18; Elsken et al, ’17&18]
 - Weight sharing [Pham et al,’18; Bender et al, ’18; Liu et al, ‘19]
 - Multi-fidelity optimization [Klein et al, ‘16; Li et al, ‘18; Falkner et al, ‘18]
Outbox

• Part 1: AutoML as Blackbox Optimization

Part 2: Speeding up AutoML
– Fast Neural Architecture Search via Network Morphisms
– Fast Neural Architecture Search via Weight Sharing: DARTS
– Fast Hyperparameter Optimization via Multi-fidelity Methods

• Part 3: “Auto-RL” for Learning to Design RNA
Fast Architecture Search via Network Morphisms

[Elsken, Metzen & Hutter, MetaLearn 2017]

Result: enables **architecture search in 12 hours on 1 GPU**

Network morphisms
[Chen et al, 2015; Wei et al, 2016; Cai et al, 2017]

Cosine annealing
[Loshchilov & Hutter, 2017]
To trade off network size vs. error, maintain a Pareto front of the 2 objectives

Evolve a population of Pareto-optimal architectures over time

LEMONADE: Lamarckian Evolution for Multi-Objective Neural Architecture Design
 - Weight inheritance through approximate morphisms
 - Still cheap: 1 week on 8 GPUs
• **Comparison to existing mobile-sized networks**
 – Using the same training pipeline
 – Better than manually-constructed mobile architectures
 – Better results than NASNet and 35x faster search (56 vs. 2000 GPU days)
• **Comparison to existing mobile-sized networks**
 – Using the same training pipeline
 – Better than manually-constructed mobile architectures
 – Better results than NASNet and 35x faster search (56 vs. 2000 GPU days)
Weight Sharing: DARTS

- Relax the discrete NAS problem (a->b)
 - One-shot model with continuous architecture weight α for each operator
 - Combined operator:
 $$\widetilde{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_{o}^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

- Solve a bi-level optimization problem (c)
 $$\min_{\alpha} \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
 s.t. $w^*(\alpha) = \arg\min_{w} \mathcal{L}_{train}(w, \alpha)$

- In the end, discretize to obtain a single architecture (d)
Too slow for big data

Hyperparameter optimization

→ Multi-fidelity methods

In a nutshell: use cheaper-to-evaluate approximations of the blackbox, performance on which correlates with the real blackbox
• **One possible approximation: use a subset of the data**

 – E.g.: SVM on MNIST
 – Many cheap evaluations on small subsets
 – Few expensive evaluations on the full data
 – **Up to 1000x speedups** [Klein et al, AISTATS 2017]
Using Cheap Approximations of the Blackbox

- **One possible approximation: use less epochs of SGD**
 - [Swersky et al, arXiv 2014; Domhan et al, IJCAI 2015]

![All learning curves](image1.png)

![With predictive termination](image2.png)
• **Cheap approximations exist in many applications**
 – Subset of data
 – Fewer epochs of iterative training algorithms (e.g., SGD)
 – Downsampling images in object recognition
 – Shorter MCMC chains in Bayesian deep learning
 – Fewer trials in deep reinforcement learning

 – Also applicable in different domains, e.g., **fluid simulations**:
 • Less particles
 • Shorter simulations
How to Exploit Cheap Approximations

- **Bayesian optimization** [Klein et al, 2017; Kandasamy et al, 2017]
 - Fit a predictive model \(f(\lambda, b) \) to predict performance as a function of hyperparameters \(\lambda \) and budget \(b \)
 - Extrapolate performance from small to large budgets

- **Simpler approach:**
 - Successive Halving [Jamieson & Talwalkar, AISTATS 2015]
 - Hyperband [Li et al, ICLR 2017]
• **Bayesian optimization**
 – for choosing the configuration to evaluate

• **Hyperband**
 – for deciding how to allocate budgets

• **Advantages**
 – All the advantages of Hyperband
 • Strong anytime performance
 • General-purpose
 – Low-dimensional continuous spaces
 – High-dimensional spaces with conditionality, categorical dimensions, etc
 • Easy to implement
 • Scalable
 • Easily parallelizable
 – But also strong final performance (due to Bayesian optimization)
Hyperband vs. Random Search

Biggest advantage: much improved **anytime performance**

Auto-Net on dataset adult
Bayesian Optimization vs. Random Search

Biggest advantage: much improved final performance

Auto-Net on dataset adult
Combining Bayesian Optimization & Hyperband

Best of both worlds: strong *anytime and final performance*

Auto-Net on dataset adult
Almost Linear Speedups By Parallelization

Auto-Net on dataset letter
Application to Bayesian Deep Learning

- **Stochastic Gradient Hamiltonian Monte Carlo**

- **Budget: MCMC steps**
Application to Deep Reinforcement Learning

- **Proximal policy optimization** on cartpole benchmark
- Budget: trials (to find a robust policy)
Application to Second AutoML Challenge

[Feurer, Eggensperger, Falkner, Lindauer, Hutter; AutoML 2018]

- **Auto-sklearn 2.0**
 - Uses base algorithms from scikit-learn and XGBoost
 - Optimized using BOHB
 - Budgets: dataset size; number of training epochs
 - More efficient for large datasets than Auto-sklearn 1.0

- Use **meta-learning across datasets** to warmstart BOHB
 - 16 complementary configurations for the first phase of successive halving pre-selected with SMAC

- **Won the second international AutoML challenge** (2017 –2018)
Outline

• Part 1: AutoML as Blackbox Optimization

• Part 2: Speeding up AutoML

Part 3: “Auto-RL” for Learning to Design RNA
The RNA Design Problem

- **Background on RNA:**
 - Sequence of nucleotides (C, G, A, U)
 - Folds into a secondary structure, which determines its function
 - **RNA design**: find an RNA sequence that folds to a given structure

- RNA folding is $O(N^3)$ for sequences of length N
- RNA design is computationally hard
 - Typical approach: generate and test; local search
 - Here: learning a policy network to sequentially design the sequence
RNA Design as an RL Problem

- **Actions:**
 - Place next nucleotide/pair of nucleotides

- **State** at time t:
 - Simply a local n-gram centered at step t:

- (Episodic) **reward**:
 - Fold the designed sequence, measure agreement with target

- **Policy network**: maps the state to a probability distribution over actions
RL and Meta-Learning for RNA Design

LEARNA
- Offline phase: -
- Online phase:
 - Run PPO on the target structure
 - Run on 1 core, for 10 min (Rfam) or 1 day (Eterna); enough for about 100-10,000 episodes (depending on sequence length and policy network)

Meta-LEARNA
- Offline phase:
 - Optimize the policy network \mathcal{P} with PPO, to maximize reward across a training set of RNA structures, for 1 hour on 20 parallel workers
 - This budget is less than the 24-hour budget for a single Eterna structure!
- Online phase: iteratively sample from \mathcal{P} on the target structure

Meta-LEARNA-adapt
- Offline phase: same as Meta-LEARNA
- Online phase: continue running PPO on the target structure
• We optimize the policy network’s neural architecture

![Diagram of neural network architecture](image)

- Sampled action
- Fully connected
- Optional RNN (up to 2 layers)
- Optional CNN (up to 2 layers)
- Optional embedding
- State representation: n-grams

• At the same time, we jointly optimize further hyperparameters:
 - Length of n-grams (parameter of the decision process formulation)
 - Learning rate
 - Batch size
 - Strength of entropy regularization
• Created a new set of RNA target structures for training
 – 65,000 structures for training, 100 for validation, 100 for test

• **Meta-optimizing LEARNA**
 – No offline learning phase, so directly optimized on the validation set
 – Full function evaluations on the Rfam dataset cost 10 minutes = 600s
 – Multi-fidelity budgets: 22s, 66s, 200s, 600s
 – Overall optimization budget: about 1 day on 180 CPU cores

• **Meta-optimizing Meta-LEARNA**
 – Maximum runtimes we used: 1h (on 20 workers)
 – Multi-fidelity budgets: 400s, 1200s, 3600s
 – Overall optimization budget: about 1 day on 1,000 CPU cores
Results: Eterna100

- Meta-LEARNA
- Meta-LEARNA-adapt
- MCTS-RNA
- LearNA
- RNAInversion
- RL-LS
- AntaRNA

450x speedup

TensorForce startup overhead
Results: Rfam-Taneda

- **Rfam-Taneda**
- **RL-LS**
- **Meta-LEARNA**
- **Meta-LEARNA-adapt**
- **LEARNA**
- **AntaRNA**
- **RL-LS**
- **RNAInverse**

Graph:
- **Solved Sequences [%]**
- **Time [seconds]**

- **TensorForce startup overhead**

UNIFREIBURG
• Part 1: AutoML as Blackbox Optimization

• Part 2: Speeding up AutoML

• Part 3: “Auto-RL” for Learning to Design RNA

Conclusion
Conclusion

- **AutoML**: *true end-to-end learning*

- **Large speedups by going beyond blackbox optimization**
 - Speedups in NAS and hyperparameter optimization
 - BOHB: combination of Bayesian optimization and Hyperband
 - AutoML is directly applicable to RL and Meta-Learning
 - Application to “Auto-RL” for learning to design RNA etc)

- Links to code: http://automl.org
Thank you for your attention!

Funding sources

My fantastic team

I’m looking for additional great postdocs!

@FrankRHutter
@automlfreiburg